Advances in Probabilistic Reasoning

نویسندگان

  • Dan Geiger
  • David Heckerman
چکیده

This paper discuses multiple Bayesian networks representation paradigms for encoding asymmetric independence assertions. We offer three contributions: (1) an inference mechanism that makes explicit use of asymmetric independence to speed up computations, (2) a simplified definition of similarity networks and extensions of their theory, and (3) a generalized representation schexne that encodes more types of asymmetric independence assertions than do similarity networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

Reasoning in Reference Games: Individual- vs. Population-Level Probabilistic Modeling

Recent advances in probabilistic pragmatics have achieved considerable success in modeling speakers' and listeners' pragmatic reasoning as probabilistic inference. However, these models are usually applied to population-level data, and so implicitly suggest a homogeneous population without individual differences. Here we investigate potential individual differences in Theory-of-Mind related dep...

متن کامل

A Case Study in Integrating Probabilistic Decision Making and Learning in a Symbolic Cognitive Architecture: Soar Plays Dice

One challenge for cognitive architectures is to effectively use different forms of knowledge and learning. We present a case study of Soar agents that play a multiplayer dice game, in which probabilistic reasoning and heuristic symbolic knowledge appear to play a central role. We develop and evaluate a collection of agents that use different combinations of probabilistic decision making, heuris...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

From Weighted to Unweighted Model Counting

The recent surge of interest in reasoning about probabilistic graphical models has led to the development of various techniques for probabilistic reasoning. Of these, techniques based on weighted model counting are particularly interesting since they can potentially leverage recent advances in unweighted model counting and in propositional satisfiability solving. In this paper, we present a new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991